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Abstract— A method for estimation of the change point
in event related desynchronization test is presented. The
method is based on tracking of a single system pole of the
time-varying ARMA model. The pole is approximated
using perturbation theory.

I. Introduction

The end to automatic analysis of EEG is often seg-
mentation of the EEG into stationary epochs. The pa-
rameters of autoregressive (AR) and autoregressive mov-
ing average (ARMA) models have been found to exhibit
reasonably good discrimination efficiency in many cases
[1]. Several algorithms exist for calculation of the model
parameters. Since EEG is a nonstationary signal, a nat-
ural choice is to use an adaptive algorithm, such as the
recursive least squares (RLS) algorithm [2].

Sometimes the model roots are more suitable for mak-
ing further inference than the model parameters directly
[3]. The use of model roots has been proposed earlier
for the classification of stationary epochs of EEG [4].
The calculation of all the roots from model parameters
each time can be computationally too expensive if some
standard method is used. The roots can, however, been
approximated with the so-called eigenvalue perturbation
theory.

We extend these results to the event related synchro-
nization/desynchronization (ERS/ERD) analysis of al-
pha waves of EEG [5]. When a patient has his/her eyes
closed, the occipital EEG shows high intensity in the 8–12
Hz region (synchronization) while with the opening of the
eyes this intensity decreases or even vanishes (desynchro-
nization). The end of the analysis is to find the transition
point in EEG signal between the states.

II. Methods

Time-varying ARMA(p, q) models for the process xt
can be written as

xt =
p∑
k=1

ak(t)xt−k +
q∑
`=1

b`(t)et−` + et , (1)

where et is a prediction error process (white noise) and
the parameters ak(t) and b`(t) are estimated with an
adaptive predictor. There are several algorithms that can
be used as predictors. We use here the recursive least
squares (RLS) algorithm [2], which takes the form

Xt = [xt−1, . . . , xt−p, et−1, . . . , et−q]T (2)

et = xt − θT
t−1Xt (3)

Kt = Pt−1
Xt

µ+XT
t Pt−1Xt

(4)

θt = θt−1 + etKt (5)
Pt = µ−1(I −KtX

T
t )Pt−1 (6)

where

θt = [â1(t), . . . , âp(t), b̂1(t), . . . , b̂q(t)]T (7)

and the transpose is denoted by (·)T. The trade-off be-
tween tracking speed and estimate variance is controlled
via the forgetting factor µ < 1.

We aim to approximate a root λk(ε) of the polynomial
â(t0) + εδâ(t) where δâ(t) = â(t)− â(t0) with the second
order Taylor series expansion

λk(ε) ≈ λk + ελ′k +
1
2
ε2λ′′k , (8)

where λk is a root of â(t0). As is well known, the roots
of a polynomial equal the eigenvalues of the associated
companion matrix

A =


â1(t0) â2(t0) . . . âp(t0)

1
1

. . .
1

 (9)

where all the blank entries are zeros. If â(t0) is per-
turbed by δâ(t), the new roots are the eigenvalues of
A + εB, where ε = 1, B is a p × p matrix with first
row (δâ1(t), . . . , δâp(t))T and all the other entries zeros.
It can be shown [6], that the second order Taylor expan-
sion for λk is now (denoting λk(1) by λk(δâ(t)) to stress
the dependence of the perturbation on δâ(t) and setting
ε = 1)

λk(δâ(t)) = λk +
wT
kBvk
wT
k vk

+ (wT
k vk)−1wT

k

[
B − wT

kBvk
wT
k vk

I

]
p∑
`=1
` 6=k

wT
` Bvk

(λk − λ`)wT
` v`

v` (10)

where wk and vk are the left and right eigenvectors of A
respectively. The special structure of B makes it possible



to write (10) in a form in which the complexity of the
approximation is only 2p+1 complex multiplications and
additions for a single root. The approximation capability
of (10) is visualized in Fig. 1.
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Fig. 1. The error in root approximation in a selected area of the
complex plane. The expansion center â(t0) is in the center of
the grid. The grid envelope is also shown in Fig.3.

III. Results

We used the method for estimation of the change points
in the event related desyncronization test. Three typical
epochs are shown in Fig. 2.
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Fig. 2. Three typical epochs of ERD test. The vertical lines show
the learning sets. The stair function denotes the result of the
detection.

The procedure of the change point detection was as
follows:

1. Select two segments from the data, one for each state
(vertical dotted lines in Fig. 2). Use these as the
learning sets for the classes.
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Fig. 3. The detection border is selected using the roots of the
learning sets. The square denotes the approximation area of
Fig. 1.

2. Run these segments through RLS to obtain param-
eter estimates for the classes.

3. Approximate the roots of interest with (10) and de-
termine the detection boundary (Fig. 3).

4. Run the whole data through RLS and a root approx-
imation procedure, classify and run further through
an optional post-processor (e.g. a median filter).

The result of detection is visualised in Fig. 2 with stair
functions.

IV. Conclusions

The two states of the event related desyncronization
test can be efficiently discriminated by a single pole of an
ARMA(6, 2) model. The tracking of the model param-
eters can be done with the forgetting factor RLS algo-
rithm and the root of interest can be approximated with
the perturbation equations. The computational burden
is small enough to allow for a real time implementation
with a general purpose personal computer.
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