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INTRODUCTION
tt EEG recording is a useful tool for studying the functional states of

the brains and for diagnosing certain neurophysiological states
and disorders.

tt Several time domain and frequency domain methods have been
proposed for the assessment of EEG activity.

tt Frequency domain parameters are often extracted from the power
spectral density (PSD) estimate, which presents the power
present in EEG as a function of frequency.

tt Power spectrum can be calculated with either non-parametric (e.g.
methods based on FFT) or parametric (e.g. methods based on
autoregressive moving average time series modelling) methods.

tt Here we use time-varying ARMA model.
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METHODS
Time-v arying linear regression

tt If the signal to be modelled is nonstationary it can not be
modelled as an output of a time-invariant system. It is natural in
this case to assume that the system has time-varying parameters.

tt The time-varying ARMA(p,q) model can be written in the form

z(t) =
P p

j =1 aj (t)z(t � j ) +
P q

k=1 bk (t)e(t � k) + e(t)

where aj (t) and bk (t) are the time-varying AR and MA parameters
and e(t) is the driving white noise process.

tt The time-varying parameter estimation problem can be solved
with adaptive algorithms such as Least Mean Squares (LMS) or
Recursive Least Squares (RLS). These can both be derived from
the Kalman �lter equations presented here.
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tt If we denote

� t = (a1(t); : : : ; ap(t); b1(t); : : : ; bq(t))T

' t = (z(t � 1); : : : ; z(t � p); e(t � 1); : : : ; e(t � q)) T

we can write the ARMA(p,q) model in the form

zt = ' T
t � t + et (spaceequation)

which is formally a linear observation model.
tt A typical description for the parameters � t when no a priori

information is available, is the random walk model

� t +1 = � t + wt (state equation)

tt This speci�c form of the general state space equations, with the
input process wt , is solved adaptively with Kalman �lter algorithm.
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wt � Delay ' T
t � zt

et

� t +1 � t

Structure of the signal model.

Cwt = � 2
w I

Cet = � 2
eI
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Kalman �lter

tt The Kalman �lter ing problem is to �nd the minimum mean square
estimator �̂ t for state � t given the observations z1; z2; : : : ; zt .
Kalman �lter equations can be written in the form

�̂ t j t � 1 = �̂ t � 1

C~� t j t � 1
= C~� t � 1

+ Cwt � 1

K t = C~� t j t � 1
' t

�
' T

t C~� t j t � 1
' t + Cet

� � 1

C~� t
=

�
I � K t ' T

t

�
C~� t j t � 1

�̂ t = �̂ t j t � 1 + K t

�
zt � ' T

t �̂ t j t � 1

�

tt Where K t is the Kalman gain matrix and C denotes covariance
matrices.

tt The adaptation of the �lter is primarily affected by Cwt .
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Fixed-inter val smoother

tt The �x ed-interval smoothing problem is to determine minimum
mean square estimator �̂ t jT for state � t given the observations
z1; z2; : : : ; zT for �x ed T and for all t in the interval 1 � t � T .

tt Fixed-interval smoothing equations can be written in the form

�̂ t � 1jT = �̂ t � 1 + At � 1

�
�̂ t jT � �̂ t j t � 1

�

At � 1 = C~� t � 1
C� 1

~� t j t � 1

tt Error covariances in At � 1 and estimates �̂ t � 1 and �̂ t j t � 1 are stored
in the forward run of Kalman �lter .

tt Smoothed estimates are obtained by running the stored estimates
backwards in time by taking t = T; T � 1; : : : ; 2. Initialization is
with the �ltered estimate.
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Spectral estimation

tt Once the time-varying coef�cients of the ARMA(p,q) model are
solved the time-varying power spectral density (PSD) estimate
can be obtained from

Pt (! ) = � 2
e(t) j1+

P q
k =1 bk ( t )e� i! k j 2

j1�
P p

j =1 aj ( t )e� i! j j 2

where � 2
e(t) is the prediction error variance.

tt Note that the power spectrum can be calculated for each time
instant after the adaptive algorithm, used to estimate the
time-varying ARMA parameters, converges.
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RESULTS
Simulation 1: AR(2) process

Real Part

Im
ag

in
ar

y 
P

ar
t

0 0.5 1
0

0.5

1

0 256 512 768 1024

AR(2) process root evolution and a typical realization.
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Simulation 2: realistic sim ulation of EEG transition

tt In many cases we are interested in tracking of narrow band
characteristics of the EEG signal. One such case is the event
related desynchronization/synchronization (ERD/ERS) of alpha
waves.

tt Occipital EEG recorded while subject having eyes closed shows
high intensity in the alpha band (7–13 Hz).

tt With the opening of the eyes this intensity decreases or even
vanishes.

tt It can be assumed that EEG exhibits a transition from a stationary
state to another. Such a transition is here simulated as an AR(5)
process.
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Simulation of ERD/ERS of alpha waves of EEG as an AR(5) process.
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The roots before (+ ) and after (x) the transition are estimated from real EEG data. Abrupt transition is
smoothed by projecting the AR coef�cients onto a smooth subspace aligned by Gaussian hump vectors.
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Simulation of ERD/ERS of alpha waves of EEG as an AR(5) process.
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Tracking of ERD/ERS of alpha waves of EEG
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Spectrogram is calculated as a
moving window Fourier transfor-
mation. A time-window of 2 sec-
onds is used, which corresponds
to a frequency resolution of 0.5
Hz.
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Tracking of ERD/ERS of alpha waves of EEG
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LMS algorithm
The step size of the LMS algo-

rithm is � = 0:2 � 10 � 3 , which
is small enough to guarantee the
stability of the algorithm.
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Tracking of ERD/ERS of alpha waves of EEG
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The forgetting factor of the RLS
algorithm is selected to be � =
0:95. With this choice quite sta-
ble estimates, but still rather fast
adaptation, is obtained.
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Tracking of ERD/ERS of alpha waves of EEG

-50

0

50

0 2 4 6 8 10
0

10

20

E
E

G
 (m

V
)

F
re

qu
en

cy
 (

H
z)

Time (seconds)

Eyes open Eyes closed

Spectr ogram

LMS algorithm

RLS algorithm

Kalman smootherKalman smoother

The state noise covariance coef-
�cient, mainly affecting the adap-
tation of Kalman �lter , was se-

lected to be � 2
w = 0:3 � 10 � 3 .
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Tracking of ERD/ERS of alpha waves of EEG
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Alpha activity detection
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Alpha activity detection

-50

0

50

0 2 4 6 8 10 12 14
0

10

20

E
E

G
 (

mV
)

F
re

qu
en

cy
 (

H
z)

Time (seconds)

0 2 4 6 8 10 12 14

10
2

10
3

P
ow

er
a
 (

mV
2 )

Time (seconds)

Alpha band: 7–13 Hz

Threshold: 60 �V 2

Mika P. Tarvainen, Department of Applied Physics, University of Kuopio Slide 13 – p.13



EMBC 2001 Istanbul, Turkey

Alpha activity detection
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Alpha activity detection
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Software for Biosignal Anal ysis
tt Quantitative and Time-Varying EEG

tt Heart Rate Variability – HRV

tt Galvanic Skin Response – GSR

tt Event Related Brain Potentials – ERP
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