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Abstract— The galvanic skin response (GSR) is a simple
method of capturing the autonomic nerve response as a pa-
rameter of the sweat gland function. Any stimulus capable
of an arousal effect can evoke the response and the amplitude
of the response is more dependent on the surprise effect of
the stimulus than on the physical stimulus strength. In this
paper principal component analysis (PCA) is used for the
analysis of the evoked GSRs. Basis functions are obtained
from the eigendecomposition of the data correlation matrix.
Because PCA is the best mean square fit of a set of orthog-
onal functions to the set of measurements, the solution will
depend upon the nature of measurements. The dimension-
ality of measurements can be estimated by the number of
basis functions needed to estimate measurements in a cer-
tain accuracy. Hence the eigenvalues, corresponding to used
basis functions, are a measure of similarity. The method was
tested using 20 healthy subjects and 13 psychotic patients.
11 surprising auditory stimuli were delivered at irregular in-
tervals and evoked GSRs were recorded from the hand. Ob-
served similarities between adjacent waveforms were more
remarkable within healthy subjects.
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I. Introduction

The galvanic skin response (GSR) is a simple, useful,
and reproducible electrophysiological technique to inves-
tigate sympathetic nervous system function [1]. In his-
tory GSR is also known as, or closely related to, the psy-
chogalvanic reflex (PGR), electrodermal response (EDR),
skin conductance response (SCR) and sympathetic skin re-
sponse. Physically GSR is a change in the electrical prop-
erties of the skin in response to different kinds of stimuli.
In measurements changes in the voltage measured from the
surface of the skin are recorded.

A well known phenomenon of GSR is habituation, where
the amplitudes of GSRs decrease during repeated stimula-
tions [2], [3], [4]. In recent years there has been many stud-
ies concerning the normal values of GSR [1], [5], [6], [2],
[7], [3], [8], [4], [9]. The typical response waveforms have
also been studied. GSR response is a long lasting (several
seconds) waveform of simple shape, mormally biphasic or
triphasic.

The aim of this paper is to study the capabilities of PCA
to discriminate the GSR signals of healthy and psychotic
subjects. We measured GSRs from 20 healthy subjects
and 13 psychotic patients. Observed degree of similarity
was clearly higher for healthy subjects. We will show how
PCA can be used to evaluate waveshape similarity. It turns
out that eigenvalues of data correlation matrix reveal much
about the nature of measured GSRs. A significant cluster-
ing of healthy and psychotic subject groups with respect

to eigenvalues is shown.

II. Principal component analysis

Principal component analysis (PCA) is a multivariate
statistical procedure. The central idea in PCA is to reduce
the dimensionality of the data set, while retaining as much
as possible of the information in the original data. The
measured data is presented as a weighted sum of orthogonal
basis vectors. Usually PCA is performed on the covariance,
cross-product, or correlation matrix of the original data.
Here we obtain the basis vectors from eigendecomposition
of data correlation matrix.

In GSR measurements we use an observation model

zj = sj + vj , (1)

where zj is a column vector zj = (zj(1), . . . , zj(T ))T of
sampled measured potential after jth stimulus, sj is the
corresponding response signal and vj is measurement noise.
The measurement noise is assumed to be a stationary zero
mean process. If we make N measurements, the response
signals sj will span a vector space S, which will be at most
of N dimensions. In case there is similarities in measured
waveshapes, the dimension of the vector space S will be
some K ≤ N and measurements can be approximated well
with some low dimensional subspace of S. We can thus
express each measurement as linear combinations

zj = HSθj + vj . (2)

In PCA the basis vectors are obtained from eigende-
composition of data correlation matrix [10]. Eigenvec-
tors (ψ1, . . . , ψK) corresponding to largest eigenvalues
(λ1, . . . , λK) are used as basis. Approximation of corre-
lation matrix is

Rz ≈
1

N

N∑

j=1

zjz
T
j . (3)

Quantitatively the first basis vector is the best mean
square fit of a single waveform to the entire set of measure-
ments. The second basis vector is the best mean square
fit to the residual from the fit of the first factor, with a
constraint that it is orthogonal to the first basis vector
etc. Hence by using eigenvectors (ψ1, . . . , ψK) correspond-
ing to largest eigenvalues (λ1, . . . , λK) as basis, the best K
dimensional approximation of measurements in the least
squares sense is obtained. Because principal component
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solution is a best fit of a set of orthogonal functions to the
set of signals, the solution will depend upon the nature of
signal set.

In this work our main interests are the similarities of
waveshapes. By normalizing the data PCA becomes sen-
sitive to waveshape but not the signal amplitude. Infor-
mation about the nature of measurements can be obtained
from coefficients θij and from eigenvalues λi. Whenever
the observation matrix HS is orthonormal, the coefficient
θ2
ij has the property of being the mean square contribution

of ith basis vector to jth measurement zj [11], [12]. When

measurements are normalized
∑N
i=1 θ

2
ij = 1 and θ2

ij×100%
can be directly interpreted as the percentage contribution.
The expected value of coefficients (θ2

i1, . . . , θ
2
iN ) associated

with ith basis vector is [13]

E
{

(θ2
i1, . . . , θ

2
iN )
}

= λi. (4)

So each eigenvalue λi represents the mean square contri-
bution of the corresponding basis function ψi to the mea-
surements. If the first K eigenvectors are used in the ob-
servation model (2) the mean square reconstruction error,

averaged over all waveforms, will be
∑N
i=K+1 λi. This is

also the smallest conceivable mean square error. If mea-

surements are normalized
∑N
i=1 λi = 1. An ideal example

of similarity is if all the measured waveforms are identical.
Then there would be only one nonzero eigenvalue and the
eigenvector corresponding to it would have the same shape
as the measurements. So it is obvious that the magnitudes
of largest eigenvalues describe the amount of similarity in
measured waveforms.

One possible visual way to estimate the similarity of
waveshapes is to plot the cumulative sum of the eigenvalues
[11]. The shape of such a curve describes the degree of cou-
pling between various waveforms. A highly coupled signal
set will have a sharply rising curve, rapidly approaching to

its maximum
∑N
i=1 λi. If there is only few similarities be-

tween various signals the curve will approach the maximum
very slowly.

A. Procedure

A procedure for analysing similarities in GSR measure-
ments with PCA goes as follows. Measure a set of GSR
responses z = (z1, . . . , zN ). If waveshapes are of interest,
it is recommendable to normalize the measured data. This
can be done by setting the norm of each measurement to
unity. Because of habituation you should ignore responses
of smallest amplitudes. In order to reconstruct measure-
ments you need to form an observation matrix HS . In
PCA the basis vectors are obtained from eigendecomposi-
tion of data correlation matrix. Eigenvectors correspond-
ing to largest eigenvalues are selected. In discrete case the
correlation matrix can be approximated by (3).

Information about the nature of individual responses is
obtained from the eigenvalues. If similarity between mea-
surements is high, the first eigenvalue will be relatively big.
When similarities exists, but there is variation in response
latencies, the second eigenvalue, which describes the deriva-
tive of the mean, will also be significant. The rest of the
eigenvalues should be insignificant in case of similarities.

Thus the dominance of the first and second eigenvalues and
the insignificance of the rest of the eigenvalues is a measure
of similarity. The nature of eigenvalues can be presented
visually by plotting the cumulative sum of the eigenvalues.

III. Materials and methods

The galvanic skin response was recorded from 20 healthy
subjects and 13 psychotic patients. Responses were
recorded with metal electrodes placed in the palm of the
hand. The analysis time for each measurement started
from the stimulus onset and lasted 8 seconds.

The experimental procedure for all subjects was as fol-
lows. Three kinds of stimuli, standard, target and novelty,
were used in the stimulation. These auditory beeps of dif-
ferent frequency were delivered to both ears of the subject.
The subject was advised not to pay attention to standard
stimulus and to push a button when hearing a target stim-
ulus. Subject was not informed about the novelty sounds.
The novelty sounds differed from both the standard and
target sounds and the GSRs where measured after these
deviant stimuli. The experiment procedure included 11
novelty sounds and lasted about 10 minutes. The time be-
tween consecutive novelties were random, but at least 30
seconds. It is well known that any stimulus capable of an
arousal effect can evoke a galvanic skin response and the
amplitude of the response is more dependent on the sur-
prise effect of the stimulus than on the physical stimulus
strength. Because of this fact it is preferable to investi-
gate the responses of the novelty stimuli instead of target
stimuli.

IV. Results

Differences in waveshape similarity was remarkable be-
tween the two subject groups. Similarity in adjacent re-
sponses was higher for healthy subjects. Response wave-
forms were usually unaltered for healthy subjects, but there
was a tendency of habituation. Observed decrease in ampli-
tudes was 67–99% within healthy subjects. For psychotic
patients waveshapes were more random and amplitudes
usually smaller. At first we will perform PCA to a typical
pair of subjects (healthy and psychotic). Later on in clus-
ter analysis we shall present some similarity parameters in
group wise manner. Fig. 1 shows the measured responses
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Fig. 1. Measured responses for healthy (left) and psychotic (right)
subject as a waterfall plot.

for typical healthy and psychotic subject. Repeated mea-
surements are plotted from bottom to top, with reversed
vertical axis. Habituation phenomenon is seen in the re-
sponses of healthy subject.
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Fig. 2. Selected normalized responses for healthy (left) and psychotic
(right) subject.

Our intention is to investigate these waveshape similari-
ties with PCA and to obtain some criteria to separate the
two subject groups from each others. Because of the ha-
bituation, we decided to analyse only six most substantial
waveforms. The rest of the waveforms with small ampli-
tudes are not significant when investigating waveshapes.
The selected responses, normalized to unit norm, are pre-
sented in Fig. 2.

The mean values of the selected six waveforms are pre-
sented in Fig. 3. The mean value for healthy subject rep-
resents a very common response waveshape starting with a
negative phase. For the psychotic subject the mean value
is not very realistic and it seems to start immediately af-
ter the stimulus. Conclusions about the waveform coupling
and normality of the responses could be drawn by simply
looking at the mean of the measurements. Instead of stop-
ping here we are aiming to a more sophisticated way to
analyse GSR responses. We start by applying PCA into
responses presented in Fig. 2.
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Fig. 3. The mean values of selected measurements for healthy (left)
and psychotic (right) subject.

A. Eigenvalues and eigenvectors

Three eigenvectors, obtained from eigendecomposition of
data correlation matrix, corresponding to largest eigenval-
ues are presented in Fig. 4. For healthy subject the first
eigenvector (upper left corner) is quite similar with the
mean of the measurements in Fig. 3. The mean square
contribution of the first eigenvector to the measurements
is approximately 80% and the contribution of the first two
eigenvectors is over 92%. This shows how effective the two
most dominant eigenvectors can be when similarities exist.
For the psychotic subject the total contribution of the first
and second eigenvectors is only about 68%. So the first
two eigenvalues seems to be a good measure of waveshape
similarity.
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Fig. 4. Eigenvectors corresponding to the three largest eigenvalues
of the correlation matrix of the measured GSRs for healthy (left)
and psychotic (right) subject. The corresponding eigenvalues are
λ1 = 0.8090, λ2 = 0.1158 and λ3 = 0.0443 for healthy subject
and λ1 = 0.4261, λ2 = 0.2495 and λ3 = 0.1366 for psychotic
subject.
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Fig. 5. Coefficients θ2
1j (∗), θ2

2j (◦) and θ2
3j (×) for selected mea-

surements (j = 1, . . . , 6) for healthy (left) and psychotic (right)
subject.

The mean square contributions of the three largest eigen-
vectors θ2

1j , θ2
2j and θ2

3j to selected six measurements
(j = 1, . . . , 6) are presented in Fig. 5. For healthy sub-
ject the contribution of the first eigenvector is clearly the
most substantial to all waveforms and the contribution of
the third factor is effective only to the first measurement.
For psychotic subject the difference between contributions
of the first and second factor is not so evident and also the
third factor is effective in few cases.

Next we will illustrate the similarity differences with the
plot of the cumulative sum of the eigenvalues. The cumu-
lative sum of six largest eigenvalues is presented in Fig. 6.
The curve for healthy subject is more rapidly rising and
achieves the maximum earlier. This is exactly what should
happen when waveshape similarity is higher.
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Fig. 6. The cumulative sum of largest eigenvalues for healthy (left)
and psychotic (right) subject as a function of the number of eigen-
values summed (∗). The sum of all eigenvalues is 1 (- -).

B. Response amplitudes

The most important clinical parameter of GSR is the am-
plitude. Amplitude was measured from peak to peak. For
most subjects there was a habituation in amplitudes, even
though we used novelties for recordings. We also observed
a comprehensive difference in amplitudes between healthy
and psychotic subject. The maximum amplitude was 7.75
mV for healthy subject and 2.23 mV for psychotic subject.
We also calculated the mean value and standard deviation
of five largest amplitudes. The results were 7.00±0.90 mV
for healthy subject and 1.59 ± 0.50 mV for the psychotic
subject. In this case the difference in amplitudes is large,
but the variation in amplitudes between healthy subjects
is also rather substantial.

C. Cluster analysis

In this section we will compare the parameters presented
earlier between the two subject groups. Our main inter-
ests are the eigenvalues. The mean values and standard
deviations of some calculated parameters for healthy and
psychotic subject groups are presented in Table I. Usually

TABLE I

Mean values and standard deviations (std) of some specific

parameters for healthy and psychotic subjects. λi

(i = 1, . . . , 6) are the six largest eigenvalues. Vmax is the

maximum amplitude of measured responses and V
(5)
max is the

mean value of five largest amplitudes.

healthy subjects psychotic subjects
λ1 ± std 0.6673± 0.1546 0.5133± 0.1053
λ2 ± std 0.2076± 0.0857 0.2154± 0.0294
λ3 ± std 0.0742± 0.0456 0.1428± 0.0405
λ4 ± std 0.0327± 0.0305 0.0816± 0.0274
λ5 ± std 0.0138± 0.0154 0.0352± 0.0258
λ6 ± std 0.0044± 0.0060 0.0116± 0.0143

(λ1 + λ2)± std 0.8749± 0.0902 0.7288± 0.0878
Vmax ± std 4.6205± 3.5565 3.1794± 2.9999

V
(5)
max ± std 3.1711± 2.7830 1.6365± 1.3157

in PCA related cluster analysis a classification of an ob-
servation is made by plotting some principal component
(coefficient θij) as a function of another principal compo-
nent. In order to visualize the clustering of healthy and
psychotic subjects we will present plots of different eigen-
values (mean values presented in Table I). Fig. 7 shows
a plot of the sum of two largest eigenvalues λ1 + λ2 with

respect to sum
∑N
i=4 λi (reconstruction error when mea-

surements are estimated with three most dominant eigen-
vectors). The clustering of groups is clearly seen, but is
not complete. Most of the healthy subjects (14/20) are
clearly clustered in the bottom right corner. But there is
six healthy subjects which lie more or less inside psychotic
group.
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Fig. 7. Individual GSR measurements: plot of healthy (∗) and psy-
chotic (◦) subjects with respect to the sum of largest eigenvalues

λ1 + λ2 and sum
∑N
i=4 λi, where N = 6 is the number of wave-

forms analysed.

The same kind of clustering is seen in a plot of third
eigenvalue λ3 with respect to fourth eigenvalue λ4 in Fig.
8. Both λ3 and λ4 are small for a majority of healthy
subjects. Again six healthy subjects are among psychotic
subjects. These six are in fact the same ones which deviate
from other healthy subjects in Fig. 7.
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Fig. 8. Individual GSR measurements: plot of healthy (∗) and psy-
chotic (◦) subjects with respect to their third and fourth largest
eigenvalues λ3 and λ4.

V. Discussion

We have presented a principal component based anal-
ysis of GSR measurements. The nature of measurement
set is revealed from eigenvalues of correlation matrix. If
the degree of similarity is high, the first few eigenvalues
are clearly dominative and rest of the eigenvalues are in-
significantly small. By using eigenvalues as a measure of
similarity a significant clustering of healthy and psychotic
subject groups is obtained (Figs. 7 and 8). 70% of healthy
subjects are clearly separated from all psychotic patients
based on eigenvalues.
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