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Abstract A method for the estimation of medium rate transitions of nonstationary EEG is proposed. The
method is applicable to such EEG dynamics that are between a) fast transitions for which segmentation
procedures are used and b) slow transitions for which adaptive filters work properly. The estimation of
the transition dynamics is based on a novel time-varying autoregressive model. The performance of the
method is evaluated with realistic simulations of known transition dynamics and it is shown to be able to
track even slight medium-rate transitions. The method is then applied to the estimation of the dynamics
of event–related desynchronization (ERD).

1 Introduction

The traditional approach in the analysis of background EEG has been the segmentation of EEG
into (almost) stationary epochs [1, 2, 3]. This approach works often reasonably well in both very
fast and very slow transition cases. In the former case a segmenter [4, 5, 6] and in the latter case an
adaptive algorithm [7, 8] can be used. However, there are only few algorithms for the estimation
of such transitions whose rate of change falls between these two limiting cases.

Recently there has been increasing interest in the transition dynamics of EEG, that is, how
the change occurs – not only the initial and final steady states. The so-called ERD/ERS test (for
definition, see below) is an example of an application in which the transition has been investigated
for clinical relevance [9, 10, 11, 12] and methods for this task have been developed, e.g. in [13].
The ERD/ERS can be briefly described as follows.

Stimulus–induced blocking or attenuation of rhythms within the alpha frequency band (8–12
Hz) is called event–related desynchronization (ERD). The opposite phenomenon, event–related
synchronization (ERS), is the increase of rhythms within the alpha band [14, 15]. Both ERD and
ERS have been widely used in the assessment of lesions and neurophysiological pathologies such
as strokes and tumors [16, 17]. However, also in these cases mainly the steady states before and
after the transitions have been examined for the clinical evaluation. It is also believed that there
might be different delays in the occurrence of the desynchronization after the stimulus, and that
these delays might convey some information on the neurophysiological state.

The visual appearance and statistical properties of EEG in the synchronized and desynchro-
nized states can be very different with different persons. The transition can be very fast and
the statistical properties as well as visual appearance can differ considerably before and after the
transition. In some cases of event–related desynchronization, a segmenter could be used for tran-
sition detection. However, event–related desynchronization is a narrow band process usually with
considerable amount of energy in multiples of the main alpha frequency. In these cases the synchro-
nized state exhibits amplitude modulation type characteristics, see for example Figs. 9–11. The
co-occurrence of a suppression phase in the modulation and an ERD transition makes it difficult
to estimate any parameters of the transition.
∗J.K. Hiltunen, P.A. Karjalainenand J.P. Kaipio are with the Dept. of Applied Physics, University of

Kuopio, P.O.Box 1627, FIN-70211, Kuopio, FINLAND. J.K. Hiltunen and J. Partanen are with the the
Dept. of Clinical Neurophysiology, Kuopio University Hospital, P.O.Box 1777, FIN-70211, Kuopio, FINLAND.
Correspondence to: J.P. Kaipio, Department of Applied Physics, University of Kuopio, P.O.Box 1627, 70211 Kuo-
pio, FINLAND, email: kaipio@venda.uku.fi.

1



In other cases, the changes in the statistics of EEG may be too small to be detected properly
with conventional segmenters. These problematic cases are discussed more in Section 3.2 in which
the proposed method is applied to event–related desynchronization data.

The statistical properties of most previously used estimation methods such as [15] do not
enable the estimation of a single sample. However, if for example trends in the transition delays in
consecutive tests are to be detected we have to be able to estimate the individual responses with
adequate accuracy.

An algorithm for the estimation of such transition dynamics in EEG was proposed in [13, 18].
This algorithm is based on the basis constrained least squares time–varying autoregressive model
(TVARLS) and a principal component type approach in the construction of the basis functions.
The model works relatively well in the estimation of the transition dynamics and it can take into
account prior distribution of the initial and final states but it has the drawback that it has to
initialized for each patient separately. This initialization needs supervision and is computationally
burdensome. This is an unwanted requirement and an automatic algorithm that does not need
supervision would be very desirable.

Due to the variations in the characteristics of both ERD and ERS states, this means that it is
then practically impossible to implement statistical description of the ERD and ERS states into
the algorithm.

In this paper we propose an algorithm for the estimation of medium rate EEG transition
dynamics. This algorithm is based on a modification of the general TVARLS algorithm. This
modification reparametrizes the TVARLS problem so that the transition time depends only on a
single parameter of the model [19]. The estimation properties of the method are evaluated using
realistic EEG simulations with known transition dynamics. We show that the proposed method
conforms to the a priori knowledge of the process and is able to estimate a single transition within
an approximately known region. Thereafter, the method is applied to such ERD data whose
transitions are nontrivial.

The paper is organized as follows. In Section 2.1 the basis constrained time–varying autore-
gressive model is formulated and the basis selection problem is discussed in Section 2.2. The
modification of the TVARLS problem is described in Section 2.3. The TVAR model is applied to
simulated ERD in Section 3.1 and to ERD data in Section 3.2. Finally, in Section 4 we discuss
some extentions to the proposed method.

2 Methods

2.1 The general TVARLS model

The time-varying AR(p) model (TVAR) is generally of the form

xt =
p∑
k=1

ak(t)xt−k + et, (1)

where p is the order of the model, et are the residuals and ak(t) are the time–varying prediction
coefficients. The estimation of the coefficient evolutions ak(t) in (1) is a highly underdetermined
problem and no meaningful estimates can be obtained without any further constraints or the
implementation of a priori knowledge.

In the basis constrained TVAR problem the coefficients are constrained to

ak(t) =
M∑
`=0

ck`φ`(t) , (2)

where φ`(t), ` = 0, . . . ,M are the basis functions.
The minimization of the 2-norm of the residuals in (1) with the constraints (2) leads to a

quadratic problem, the TVARLS problem, with the (M + 1)p parameters ck`. The TVARLS
problem was introduced first in [20] and has thereafter been partially reformulated and applied
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Figure 1: An example of ERD (top) and the estimated TVAR(4) time-varying coefficients

ak(t), k = 1, . . . , 4 (bottom).

to EEG and speech modelling for example in [21, 22, 23, 24, 25, 26, 27]. With the exceptions of
[18, 19] the work in TVARLS modelling has been directed almost exclusively to the selection of
the basis functions.

The traditional method for the solution of the constrained LS problem (1–2) is the covari-
ance formulation [21]. The LS solution can be accessed more conveniently by writing C =
(c10, . . . , c1M , . . . , cp0, . . . , cpM )T, X = (xp+1, . . . , xT )T, E = (ep+1, . . . , eT )T and regressor ma-
trix H = (H10, . . . ,H1M , . . . ,Hp0, . . . ,HpM ) where Hk` = (φ`(p + 1)xp+1−k, . . . , φ`(T )xT−k)T and
(·)T denotes transpose [13]. The least squares problem can now be stated as

min
C
‖X −HC‖2 , (3)

the formal solution of which is
C = (HTH)−1HTX . (4)

Numerical problems may occur, if the process is almost predictable and the model order p is
selected too large. The time-varying coefficients are then assembled via (2). An example of ERD
and the estimated coefficients of TVAR(4) model are shown in Fig. 1.

A method that considers catenated coefficient evolutions and their estimation was described in
[13, 18]. The reformulation draws the coefficient transition times to occur simultaneously but has
the drawbacks that were mentioned in Section 1.

2.2 Selection of basis functions for transition dynamics

Several sets of functions have been used with the TVARLS model and the selection of basis functions
has been discussed widely in the literature, see for example [13, 27]. Basis functions that are
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Figure 2: The normalized constant vector (bold line) and the first (medium line) and

second (weak line) eigenvectors of the covariance of the set of sigmoids, φ`(t), ` = 0, 1, 2,

respectively.

commonly used to model smooth changes include polynomial, Fourier and discrete spheroidal
bases.

However, with these generic bases the parameter estimation problem has too many degrees
of freedom in the case of the ERD/ERS transition. In this case we can usually assume that the
dynamics can be described as a transition from a state to another. With this assumption we
can tailor the basis functions so that they allow changes only in the assumed transition region.
Such a set of basis functions can be constructed as in [13] in which a set of sigmoidal transition
models for the coefficients was constructed and an optimal low-dimensional approximating set was
determined. In this method, however, the coefficient evolutions were catenated.

We use this approach in the construction of (some of) the basis functions also in this paper. A
set of sigmoidal functions with smooth transitions from 0 to 1 are first constructed. These functions
form a subspace of RT . The optimal (in the 2-norm sense) two dimensional approximating subspace
is then constructed. These two basis functions together with the constant function are used as the
basis of the proposed method. The three basis functions are shown in Fig. 2.

Consider the time-varying coefficient ak(t). Let the coefficient ck1 be positive. It can then
clearly be seen that if ck2 is also positive, the transition occurs earlier than in the case in which ck2

is negative. On the other hand, if ck1 and ck2 are both negative, the transition occurs also early,
see also Fig. 3. In addition to being structurally able to model the instant of a transition with a
few basis functions, this implies, that a suitable constraint could be used to force the transitions
of each of the coefficient evolutions to occur at least approximately simultaneously.

2.3 The β–parametrization of the TVARLS problem

Our aim is to reparametrize the TVARLS problem so that the transition instant can be modelled
with a single parameter. We have now M = 2 so that the case ck2 = 0 corresponds to a situation
that the transition occurs in the middle of the interval, see Fig. 3.

We modify the original problem (3) problem

min
C
‖HC −X‖, (5)

by applying the constraints
ck2 = βck1, for all k = 1, . . . , p . (6)

We have thus C = (c10, c11, βc11, . . . , cp0, cp1, βcp1)T and it is easy to show that the transition
instants of each coefficient evolution coincide exactly. Thus the transition instants are constrained
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Figure 3: The dependence of a coefficient evolution ak(t) =
P2
`=0 ck`φ`(t) of the parameter

β. Here ck0 = 0, ck1 = 1 and ck2 = βck1. Bold line: β = 0.2, medium line: β = 0 and weak

line: β = −0.2.

to occur simultaneously for all coefficients and this instant depends only on the single parameter β.
The dependence of the transition can be seen in Fig. 3. The smaller the β, the later the transition
regardless whether the parameters c1k are negative or positive.

We expand the term HC to obtain

HC = H10c10 + H11c11 + H12βc11 + · · ·+
Hp0cp0 + Hp1cp1 + Hp2βcp1 (7)

=
p∑
k=1

(Hk0ck0 + Hk1ck1 + βHk2ck1) (8)

.= F (α) , (9)

where α = (c10, c11, . . . , cp0, cp1, β)T. This mapping α 7→ F (α) is nonlinear and thus the obtained
least squares problem

min
α
‖F (α)−X‖ (10)

is nonquadratic and has to be solved iteratively. We solve this problem with the Levenberg-
Marquardt method (stabilized Gauss-Newton algorithm). We refer to the solutions of the TVARLS
problem with parameters α as TVARLS-β estimates in the sequel.

The Jacobian JF (α) of F (α) is obtained by direct calculation and is given columnwise by

JF (α) =
(

H10, (H11 + βH12), . . . ,Hp0, (Hp1 + βHp2),

p∑
k=1

Hk2ck1

)
∈ RT−p×2p+1 . (11)

The Levenberg-Marquardt algorithm takes the form [28]

α(`+1) = α(`) + step(`)
(
JT
F (α(`))JF (α(`)) + γI

)−1

JT
F (α(`))(

X − F (α(`))
)

, (12)

where γ > 0 is a (small) stabilization parameter, I is the identity matrix and step(`) is the step
size. Normally 10− 20 iterations are adequate to achieve sufficient accuracy if step(`) is set to a
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constant. If one-dimensional search is used to adjust step(`), the stability and in most cases also
the speed of the algorithm will be enhanced.

The stabilization parameter γ is needed for the cases in which the Jacobian JF is ill-conditioned.
This may occur in principle at any time during the iteration even if the Jacobian would be well-
conditioned at the solution α∗ for which the orthogonality criterion JT

F (X − F (α∗) holds. The
solution is not affected by γ but the convergence rate depends this parameter. A large γ protects
from erroneous large norm errors in the direction estimates in the Levenberg-Marquardt algorithm
which is especially relevant when one-dimensional search is not implemented. On the other hand, a
large γ reduces the quadratic nature of the convergence of the Gauss-Newton and weakly stabilized
Levenberg-Marquardt algorithms to linear convergence.

The ill-conditionality of JF can occur easily when the synchronized state is almost predictable,
that is, the variance of the so-called innovations of the process (in the ideal case this coincides with
the residuals) is small compared to the variance of the process itself [29]. Then, if the model order
p is greater than the dimension of the minimal realization of the optimal predictor, the Jacobian
JF and thus also JT

F JF are almost singular. This results in a heavily erroneous search direction
(JT
F JF + γI)−1JT

F (X − F (α)) the norm of which can be very large if γ is small.
Another source of possible instability is the following. Assume that there is no change in

the process statistics. The estimator will the yield small estimates for all coefficients c1k (ideally
ck1 = 0 for al k). But we would then also have ck2 ≈ 0 and β could be arbitrary. This in turn
means that the rank of the Jacobian is 2p instead of 2p + 1. There are many approaches to solve
this problem, such as a treshold that is compared to maxk |ck1| to determine whether there actually
was no change in the statistics. A more systematic approach would be the following. First form
stationary models for the initial and final (synchronized and desynchronized) states. Then use a
test that is constructed to give an estimate for the probability that the parameter differences in
these models are due to statistics only.

3 Experimental results

3.1 Simulations and the transition instant estimator T̂d = T̂d(β)

We constructed a set of 14 different time-varying AR(6) processes as in [30]. These processes
simulate ERD transitions that occur smoothly. The dynamics of the simulations is realized with
Gaussian-shaped basis and is thus different from the basis that is used in the estimation. For each
of the processes 10 realizations at 11 different transition instants were simulated resulting in 1540
cases of ERD. The β parameter was estimated for each of these ERD simulations, see Fig. 4 for
examples of the simulations. These ERD simulations that all have exatly the same statistical time-
varying properties indicate clearly the problem that is associated with the transition estimation.

In principle the dependence between β and the transition time could be obtained directly by
solving the equation

φ1(Td) + βφ2(Td) = 1/2φ1(T )

for each β. However, the resulting estimator T̂d = T̂d(β) is biased in practice. For this reason we
aim for such an estimator in which β is based on real TVARLS estimates for such simulations that
have realistic transient characteristics and known (by construction) transition instants. Thus the
bias that is associated with the estimation of the parameter β will be at least partially avoided in
the estimates T̂d(β).

We seek a linear estimate for the dependence between the transition instants and the β estimates

T̂d = ψ1 + ψ2β. (13)

To obtain an estimate for a feasible Ψ = (ψ1, ψ2)T we solve the mixed norm problem

min
Ψ

{∑
jk`

|Td(j)− ψ1 − ψ2βjk`|1 + ε
∑
j

|Td(j)− ψ1 − ψ2β̄j |2
}

, (14)
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Figure 4: Seven examples of simulated time-varying EEG (ERD). The evolution of coeffi-

cients in this model is the same for all simulations. The vertical lines indicate the center of

the transition region. The vertical scale is in microvolts.

where ε is a weighting parameter between the 1-norm and 2-norm, βjk` is the estimate for the
j’th delay of the k’th realization of the `’th process and β̄j is the mean over all realizations and
processes with delay Td(j). The selection ε = 1000 turned out to be a feasible weight.

The minimization of (14) seeks to achieve a balance between the delay errors Td − T̂d for each
of the 1540 cases and the mean delay estimate T̂d over all realizations, see Fig. 5. The one–norm
minimization of individual delays is robust and aims to prevent possibly unstable β estimates from
inducing large errors to the Ψ estimate. The mean delay estimate is shown in Fig. 5 and an example
of the delay tracking characteristics is shown in Fig. 6.

The duration of the transition period of the true coefficient evolutions is approximately 800 ms.
Examples of the tracking of the transitions are shown in Fig. 7. The mean error for the transitions
is less than one third of the duration of the transition. Thus the proposed method is able to
distinguish the (predefined) transition instant even within the transition period. The estimation of
this instant within a set of realizations from a particular process is problematic for segmentation
algorithms.

3.2 Estimation of event–related desynchronization

We analyze ERD data of 22 patients in order to evaluate the estimation capabilities of the proposed
method. The ERD data were measured from occipital region, that is, channels O1 and O2 in the
10/20 electrode placement system. The measurement situation was the basic ERD/ERS test in
which the patient opened and closed her/his eyes according to an auditory stimulus. The sampling
rate was 256 Hz but the samples were low–pass filtered and decimated to decrease the sampling
rate to 256/4 Hz.

In contrast to the simulation study in which we can try to adjust Ψ so that the transition
estimate T̂d really estimates, for example, the center of the transition region, with real ERD data
we do not know the true transition instants. However, the true (defined) transition instant affects
only the parameter ψ1 and it has no effect to the parameter ψ2. Thus we can take a single sample,
construct a number of different delays of this sample and assign these samples virtual transition
times Td that equal these delays.

In the sequel the term sample refers to a measurement vector the center of which coincides
loosely with the auditory stimulus (trigger). Further, the term learning set is used to refer to those
samples that were used in the determination of the regressor vector Ψ. These samples are not used
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Figure 5: The true delay Td (bold), the mean of the estimated delays bTd (weak) and the
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Figure 7: Delay estimates for a process with different delays, true delays Td (bold) and the

estimates bTd (weak). The vertical scale is in microvolts.

in the evaluation of the estimation.
We study the ERD samples and transition estimates of three individual patients and one group

of patients. We performed the following steps in the estimation of the transition instants.

1. A group of patients (or one patient) were chosen for the estimation.

2. A number of 22 − 26 samples per patient were recorded. Of these samples 12 were used
for the learning set. Both occipital channels (O1 and O2) were measured (11–13 from each
channel).

3. Eleven delayed version of each sample were constructed. The length of the samples was set
to T = 400 that corresponds to 6.25 seconds.

4. The TVARLS-β estimates for each sample of learning set were calculated.

5. The mixed norm problem (14) is solved to obtain the parameters Ψ = (ψ1, ψ2).

6. The parameters β for each ERD sample of test set are solved and the estimated transitions
T̂d in (13) are calculated.

The results are shown in Figs. 8, 9, 10 and 11. The bold, vertical lines indicate the time instant
when the patients heard the auditory stimulus and opened their eyes (stimulus time). The weak
lines indicate the transition estimates that were obtained using the proposed method. All the
shown ERD samples are from the test sets.

Case 1: Strongly modulating ERD, Fig. 8. These kind of samples are sometimes problematic
to segmentation algorithms that are not based on the prediction error residuals. This is an easy
case that could relatively well be segmented also visually. The proposed method is also able to
track the transitions and the estimates are reasonable. However, if all ERD/ERS cases were like
this, there would be little need for such algorithms as the one considered in this paper.

Case 2: Smooth transitions, Figs. 9 and 10. The transitions are unclear in these cases and there
are hardly any visible differences in the transition area. The alpha rhythm vanishes when the eyes
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Figure 8: Case 1. ERD samples of a healthy, young male. Stimulus times (bold line) and

transition estimates (weak line). The vertical scale is in microvolts.

are opened but it reappears in the eyes open state. This kind of event–related desynchronization
causes problems to most segmentation methods and it would be excessively difficult to estimate the
transition instants visually. The proposed method, however, performs relatively well in estimating
the transitions.

Case 3: Group of patients, Fig. 11. The ERD samples of three, healthy persons were used both
for the learning set and the test set. All samples exhibit from moderate to heavy modulation with
more or less unclear transitions. The proposed method is able to track the transitions reasonably
well. In this example it was possible to construct the learning set with data from different test
persons.

As is shown, the method is able to track smooth medium rate transitions also in such cases that
are problematic for visual change instant detection and segmentation algorithms. The ultimate
goal of such an estimation method that is described here, is that the learning phase should be
done only once, that is, a single vector Ψ (in fact only ψ1) could be used with all ERD samples
and the estimated β parameters. However, the bias in the estimation of the β parameter seems to
depend on the synchronized and desynchronized states so much that this end is not achieved with
the TVARLS-β algorithm without further development.

4 Discussion

We have proposed a method for the modelling of smooth medium rate transitions of EEG such
as event–related synchronization/desynhronization. The method is is a modification of a more
general TVARLS scheme that constraints the transitions of all coefficient evolutions to occur
simultaneously. The method can be used in such cases in which the instant of transition is only
approximately known, which is the case in ERD/ERS. The more general TVARLS model that
can describe more complicated variations in EEG transitions, such as the rate of transition and
still maintain the desired simultaneity of coefficient transitions, are much more complex and are
feasible in the analysis of a single patient only.

The performance of the method was evaluated with simulations of known transition dynamics.
The method was shown to be able to track the instant of a smooth medium rate transition. Such

10
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Figure 9: Case 2. ERD samples of an Alzheimer patient. Stimulus times (bold line) and

transition estimates (weak line). The vertical scale is in microvolts.

0 1 2 3 4 5 6 7
−60

60

Time (s)

Figure 10: ERD samples of a multi–infarct patient. Stimulus times (bold line) and transi-

tion estimates (weak line). The vertical scale is in microvolts.
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Figure 11: Case 3. ERD samples of three, healthy persons, 6 samples from each person.

Stimulus times (bold line) and transition estimates (weak line). The vertical scale is in

microvolts.
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transitions conflict with the assumptions that are inherent when conventional segmenters and, on
the other hand, adaptive algorithms are used.

Finally, the method was applied to event–related desynchronization data of healthy persons
as well as patients who have Alzheimers disease or multi–infarct dementia (MID). The method
was able to track the transitions in such cases that are problematic to conventional approaches.
This suggests that the proposed TVARLS-β algorithm, whose assumptions on the rate of change
in the process statistics fall between the segmentation algorithms and adaptive algorithms, can be
further developed so that the estimator for the transition instant would not depend notably on the
synchronized and desynchronized states. The most obvious but also most demanding approach
to achieve this end is to estimate the conditional distribution of the transition instant on all
α parameters. This approach, that is Bayesian in nature, is also structurally able to take into
account the bias in β that depends on the synchronized and desynchronized states.

Since the applications for which the proposed method is intended are basically the same as those
in which segmenters are usually used with, it is necessary to compare the performances of TVARLS-
β and segmenters. However, it has turned out that the detection capabilities of change points are
very different with different segmenters. On the other hand, it is relatively easy to construct such
simulations that comply perfectly with a particular method. The results will then naturally be
superior with this method when compared to those methods that are based on different (implicit)
assumptions. Furthermore, while the proposed method always suggests a transition instant, a
segmenter might not do that if the differences in the statistics are small enough. A fair comparison
is therefore a difficult task that is left for further studies. However, if a rate of transition can be
established with some method, the proposed TVARLS-β scheme can easily be adjusted to conform
to this rate.
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