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It is a challenge in evoked potential (EP) analysis to incorporate prior physiological knowledge for estimation.
In this paper, we address the problem of single-channel trial-to-trial EP characteristics estimation. Prior
information about phase-locked properties of the EPs is assesed by means of estimated signal subspace and
eigenvalue decomposition. Then for those situations that dynamic fluctuations from stimulus-to-stimulus
could be expected, prior information can be exploited by means of state-space modeling and recursive
Bayesian mean square estimation methods (Kalman filtering and smoothing). We demonstrate that a few
dominant eigenvectors of the data correlation matrix are able to model trend-like changes of some component
of the EPs, and that Kalman smoother algorithm is to be preferred in terms of better tracking capabilities
and mean square error reduction. We also demonstrate the effect of strong artifacts, particularly eye blinks,
on the quality of the signal subspace and EP estimates by means of Independent Component Analysis
applied as a prepossessing step on the multichannel measurements.
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1 Introduction

Evoked potentials (EPs) and ongoing brain activity
oscillations, obtained by scalp electroencephalogram
(EEG) recordings, have been linked with various cog-
nitive processes and provide means for studying cere-
bral brain function [1]. An EP is usually considered
to be a wave or complex elicited by and time-locked
to a physiological or non-physiological stimulation or
event. EPs are buried into background brain activ-
ity, and non neural activity like muscle noise. Since
many parallel mental processes may occur simulta-
neously in the brain, it is difficult to observe and
determine an evoked potential on a single-trial base.
Therefore, the simplest way to investigate EPs is to

use ensemble averages of time-locked EEG epochs
obtained by repeated stimulation. It is well known
that this signal enhancement implies a loss of infor-
mation related to trial-to-trial variability, and non-
stationary features of event related phenomena.

The generation mechanism of evoked responses is
not precisely known in many situations. EPs are as-
sumed to be generated either separately of ongoing
brain activity, or through stimulus-induced reorga-
nization of ongoing activity. For example, it might
be possible that during the performance of an audi-
tory oddball discrimination task, the brain activity
is being restructured as attention is focused on the
target stimulus [2]. Phase synchronization of ongo-
ing brain activity is one possible mechanism for the
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generation of event-related responses. That is, fol-
lowing the onset of a sensory stimulus the phase dis-
tribution of ongoing activity changes from uniform
to one which is centered around a specific phase [3].
Moreover, several studies have concluded that aver-
aged EPs are not separate from ongoing cortical pro-
cesses, but rather, are generated by phase synchro-
nization and partial phase-resetting of ongoing activ-
ity [4, 5]. However, phase coherence over trials ob-
served with common signal decomposition methods
(e.g. wavelets) can result both from a phase-coherent
state of ongoing rhythms, and from the presence of a
phase-coherent event-related potential, which is ad-
ditive to ongoing EEG [6]. Furthermore, stochastic
changes in amplitude and latency of different compo-
nents of the EPs are able to explain significant part of
inter trial variability of the measurements [6, 7, 8, 9].

Several methods have been proposed for EP esti-
mation and denoising, see for example [10, 11, 12, 13].
In general, most of the methods for single-trial EP
analysis aim to decompose the measurements into
relevant components or to explain the data through
some parameters. The parametrization gives the
necessary means to investigate, for example, the
changes that the stimulus causes to the ongoing EEG
signal, or that the repetition of the test causes to the
responses. Most of the methods are based on an
explicit model or on some specific assumptions for
the EPs. Every decomposition then involves at least
two main considerations. On the one hand, if the
resulting estimates follow too closely the measure-
ments, it is possible that some features of the data
are still going to be hidden by phenomena unrelated
to the stimulation. On the other hand, if the esti-
mates do not follow the measurements, some features
may have been neglected. Usually a balance between
these considerations is made and care is given to the
correct interpretation of a parametrization that is
able to reveal specific features of the experiment.

The performance and applicability of every single-
trial estimation method depends on the prior infor-
mation used and the statistical properties of the EP
signals. Here, we focus on the case that some param-
eters of the EPs change dynamically from stimulus-
to-stimulus. This situation could be a trend-like
change of the amplitude or latency of some phase-
locked component of the EPs. Even though, for ex-
ample, the above mentioned methods [10, 11, 12, 13]
could be used to estimate such changes, they do not
take into account in the estimation procedure this
trend-like variability.

The most obvious way to handle time variations

between single-trial measurements is sub-averaging
of the measurements in groups. Sub-averaging could
give optimal estimators if the EPs are assumed to be
invariant within the sub-averaged groups. A better
approach is to use moving window or exponentially
weighted average filters, see for example [14, 15].
Other adaptive methods have also been proposed
for EP estimation, especially for brain stem poten-
tial tracking, e.g. [16]. The statistical properties of
some average filters and different recursive estima-
tion methods for EP estimation have been discussed
through Kalman filtering in [17]. Some smoothing
methods have also been proposed for modeling trial-
to-trial variability in EPs (e.g. [18]).

An elegant way to describe trial-to-trial variations
in EPs can be given through state-space models.
State-space modeling for single-trial dynamical esti-
mation considers the EP as a vector valued random
process with stochastic fluctuations from stimulus-
to-stimulus [17]. Then past and future realizations
contain information of relevance to be used in the
estimation procedure. Recursive estimates for the
states, that are optimal in the mean square sense, are
given by Kalman filter and smoother algorithms. Of
importance is also the parametrization of the prob-
lem and the selection of an observation model for
the measurements. For example, in [16, 17] generic
observation models were used based on shifted Gaus-
sian shaped smooth functions. While other generic
observation models could also be considered, when
all the measurements are available, data based ob-
servation models can be used.

In this paper, we extend the method presented
in [17] to the use of Kalman smoother algorithm.
We demonstrate that for batch processing the use of
the smoother algorithm is preferable. Fixed-interval
smoothing improves the tracking performance of EP
characteristics and reduces greater the noise. In par-
allel, we propose a novel method for state-space mod-
eling of EPs. The method is based on the eigen-
value decomposition of the ensemble data correla-
tion matrix. A few dominant eigenvectors form a
signal subspace that can be used for single-trial esti-
mation. Subspace based methods have already been
proposed for EP estimation, for example, in [12, 24].
However, these approaches do not take into account
in the estimation procedure the situation that some
characteristics of the EPs change dynamically form
stimulus-to-stimulus. In this paper, we demonstrate
that such a signal subspace can be used to model
dynamic changes present in EP measurements.

The approach is demonstrated with simulated and
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real measurements obtained by an auditory EP ex-
periment. Finally, we investigate the effect of strong
artifacts on the quality of the estimates by means
of independent component analysis (ICA), which is
applied as a prepossessing step on the multichannel
measurements.

2 Methods

The sampled potential (from channel l) relative to
the successive stimulus or trial t can be denoted with
a column vector of length M

zt =











zt(1)
zt(2)

...
zt(M)











, t = 1, . . . , T, (1)

where T is the total number of trials.

2.1 Linear estimation and additive noise model

A widely used model for EP estimation is the addi-
tive noise model. The observations are then assumed
to be of the form

zt = st + υt. (2)

The vector st corresponds to the part of the activity
that is related to the stimulation, and the rest of
the activity υt is usually assumed to be independent
of the stimulus and the EP. Single-trial EPs can be
further modeled as a linear combination of some pre-
selected basis vectors. Then, the observation model
takes the form

zt = Htθt + υt, (3)

where Ht is the observation matrix, which contains
the basis vectors ψt,1, . . . , ψt,k of length M in its
columns, and θt is a parameter vector of length k.
The estimated EPs ŝt can then be obtained by using
the estimated parameters θ̂t as follows

ŝt = Htθ̂t. (4)

By treating both θt and υt as random, the estima-
tor θ̂t that minimizes the mean square Bayes cost
BMS = E{‖θt − θ̂t‖

2}, is given by the conditional
mean [19],

θ̂t = E{θt|zt}, (5)

of the posterior distribution

p(θt|zt) ∝ p(zt|θt)p(θt) (6)

∝ pυt
(zt −Htθt|θt)p(θt). (7)

By taking into account the linear observation model,
and that θt and υt are assumed uncorrelated, i.e.
Cθt,υt

= 0, the linear conditional mean estimator
takes the form [19]

θ̂t = (HT
t C

−1
υt
Ht+C

−1
θt

)−1(HT
t C

−1
υt
zt+C

−1
θt
ηθt

), (8)

where Cθt
and ηθt

are respectively the covariance and
the mean of θt. Cυt

is the covariance of the zero mean
measurement noise, and (·)T denotes transpose. The
estimator is optimal in the mean square sense among
all possible estimators, not only linear, if θt and υt

are Gaussian. In Bayesian estimation this is also
called the maximum a posteriori estimator (MAP),
and Cθt

and ηθt
represent prior information about

the parameters θt. If they are not available, we can
assume C−1

θt
= 0 corresponding to infinite prior vari-

ance for the parameters. In this case, the estimator
reduces to the ordinary minimum variance Gauss-
Markov estimator, which treats the parameters as
non random. If we assume that the errors are inde-
pendent with equal variances Cυt

= σ2
υt
I, the esti-

mator is identical to the ordinary least squares esti-
mator

θ̂t = (HT
t Ht)

−1HT
t zt. (9)

2.2 State-space modeling of EPs

Estimators of the form (8) can be used to model time-
varying characteristics of EPs, for example, in terms
of amplitude and latency estimates of some charac-
teristic peak of the signals. However, such estimators
do not take into account situations that some dynam-
ical behavior is expected from stimulus-to-stimulus.
A mathematical plausible way to incorporate prior
information for estimation about time-varying phe-
nomena is given through state-space modeling.

The measurement vectors zt can be considered as
realizations of a stochastic vector process, that de-
pend on some unobserved parameters θt (state vec-
tor) through the model (3). The parameters θt are
the quantities that we are primarily interested in,
and their form depends on the parametrization of
the estimation problem. In order to model the time
evolution of the hidden process θt a linear first order
Markov model can be used, i.e.

θt = Ftθt−1 + ωt, (10)

with some initial distribution for θ0. Equations (3)
and (10) form a linear state-space model, where Ft

and Ht are preselected matrices. Other important
assumptions for the model are:
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• for every i 6= j the observation noise vectors
υi, υj as well as the state noise vectors ωi, ωj

are mutually independent and also mutually in-
dependent of the initial state θ0,

• the vectors ωi, υj are mutually independent for
all i, j.

For the white noise sequences ωt and υt we can also
assume E{ωt} = 0 and E{υt} = 0 for every t, but
the covariances Cωt

, Cυt
can still be time-varying.

2.3 Kalman filter and smoother algorithms

The Kalman filtering problem is related to the de-
termination of the mean square estimator θ̂t for the
state θt given the observations z1, . . . , zt. This is
equal to the conditional mean

θ̂t = E{θt|z1, . . . , zt} = E{θt|Zt), (11)

that relates to the density [19]

p(θt|Zt) ∝ p(zt|θt)p(θt|Zt−1), (12)

where

p(θt|Zt−1) =

∫

p(θt|θt−1)p(θt−1|Zt−1)dθt−1. (13)

The optimal linear mean square estimator can then
be obtained recursively by restricting to a linear con-
ditional mean, or by assuming υt and ωt to be Gaus-
sian [19]. The recursive estimator can be written as

θ̂t=(HT
t C

−1
υt
Ht+C

−1

θ̃t|t−1

)−1(HT
t C

−1
υt
zt+C

−1

θ̃t|t−1

θ̂t|t−1),

(14)

where θ̂t|t−1 is the prediction of θt based on θ̂t−1 and

θ̂t−1 = E{θt−1|zt−1, . . . , z1} is the optimal MS esti-
mate at time t − 1. Clearly this is of the form (8),
which is the Bayesian MAP estimator using the last
available estimate as prior information. After adding
the initializations Kalman filter algorithm can be
written as

• Initialization

Cθ̃0
= Cθ0

(15)

θ̂0 = E{θ0} (16)

• Prediction step

θ̂t|t−1 = Ftθ̂t−1 (17)

Cθ̃t|t−1
= FtCθ̃t−1

FT
t + Cωt

(18)

• Filtering step

Kt = Cθ̃t|t−1
HT

t (HtCθ̃t|t−1
HT

t + Cυt
)−1(19)

θ̂t = θ̂t|t−1 +Kt(zt −Htθ̂t|t−1) (20)

Cθ̃t
= (I −KtHt)Cθ̃t|t−1

, (21)

for t = 1, . . . , T . The matrix Kt is called the Kalman
gain matrix.

If all the measurements are available, i.e. zt, t =
1, . . . , T , then the fixed interval smoothing problem
can be considered, that is

θ̂s
t = E{θt|z1, . . . , zT } = E{θt|ZT }, (22)

that relates to the density [20]

p(θt|ZT ) = p(θt|Zt)

∫

p(θt+1|θt)p(θt+1|ZT )

p(θt+1|Zt)
dθt+1.

(23)
The last form suggests again a recursive estimation
procedure for the determination of the conditional
density. It is thus possible to compute filtered and
prediction distributions in a forward (filtering) re-
cursion, and then execute a backward recursion with
each smoothed distribution p(θt|ZT ) relying upon
the quantities calculated in the forward run and the
previous (in reverse time) smoothed distributions
p(θt+1|ZT ). This property enables the formulation
of the forward-backward method for the smoothing
problem [21], which gives the smoother estimates as
corrections of the filter estimates. So for the linear
or Gaussian case the smoothing problem is complete
through the backward recursion

• Smoothing

At = Cθ̃t
FT

t+1Cθ̃t+1|t
(24)

θ̂s
t = θ̂t +At(θ̂

s
t+1 − θ̂t+1|t) (25)

Cθ̃s

t

= Cθ̃t
+At(Cθ̃s

t+1

− Cθ̃t+1|t
)AT

t , (26)

for t = T−1, T−2, . . . , 1. For the initialization of the
backward recursion the filter estimates can be used,
i.e. θ̂s

T = θ̂T .

2.4 Signal and noise subspaces

Singular value decomposition (SVD) has many the-
oretical and practical applications in signal process-
ing and identification problems [22]. In relatively
high signal-to-noise ratio conditions (SNR), SVD of
a data matrix can divide measurements into signal
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and noise subspaces. Alternatively, it can also be un-
derstood in terms of principal component regression
(PCR) as a combined method for signal enhancement
and optimal model dimension reduction [23]. The
subspace method has been used to enhance stimulus
phase-locked activity in different studies (e.g. [24]).

The available data matrix Z = [z1, . . . , zT ] ∈
R

M×T , which has as columns the EEG sampled
epochs relative to the stimulation, can be decom-
posed as

Z = UΣV T , (27)

where U ∈ R
M×M satisfies UTU = I, V ∈ R

T×T

satisfies V TV = I, and Σ ∈ R
M×T is a pseudo-

diagonal matrix with non-negative diagonal elements
σi such that σ1 ≥ σ2 ≥ . . . ≥ σmin(M,T ) ≥ 0. If
M ≤ T then Σ has the form Σ = [Σ1, 0], where
Σ1 = diag(σ1, . . . , σM ) and 0 is a zero matrix. If

M > T then has the form Σ =

[

Σ1

0

]

, where

Σ1 = diag(σ1, . . . , σT ). Only r singular values are
non zero, where r = rank(Z).

For the additive noise model and relatively small
noise the following decomposition can be considered

Z = [Us, Uυ]

[

Σs 0
0 Συ

]

[Vs, Vυ]T . (28)

The matrix Σs contains the k largest singular val-
ues and Us the respective left singular vectors as-
sociated mainly with the signals st. Thus the ma-
trices (Us,Σs, Vs) represent a signal subspace, and
(Uυ,Συ, Vυ) represent primarily the noise subspace.

From the SVD of the matrix Z = UΣV T we also
have

ZZT = UΣ2
1U

T . (29)

This means that the left singular vectors of Z are the
eigenvectors of the matrix ZZT , or the eigenvectors
of the data correlation matrix

R̂ =
1

M
ZZT . (30)

If we denote with Hs the matrix with columns
the k dominant eigenvectors, then the ordinary least
squares estimator for the parameters θt becomes

θ̂t = (HT
s Hs)

−1HT
s zt = HT

s zt. (31)

Estimates for the EPs can then be obtained from
(4). Quantitatively, the first basis vector is the best
mean-square fit of a single waveform to the entire set
of epochs. Thus, the first eigenvector is similar to the
mean of the epochs, and the corresponding parame-
ters or principal component θ̂t(1) (t = 1, 2, . . . , T )

reveal the contribution of the eigenvector to each
epoch. The rest of the dominant eigenvectors model
primarily amplitude differences between individual
EP peak components, and latency variations from
trial-to-trial. Therefore, since this basis contains
prior information about phase-locked characteristics
of the EP signals, we consider the following state-
space model for dynamical estimation

θt = θt−1 + ωt (32)

zt = Hsθt + υt, (33)

with the selections Ft = I, t = 1, . . . , T , i.e. a ran-
dom walk model, and Ht = Hs for all t. Estimates
for the parameters can then be obtained by Kalman
filter and smoother algorithms for different selections
of state and observation noise covariance matrices.
Thus, the applicability of the proposed method re-
lates on the quality of the signal subspace in low
signal-to-noise ratio conditions, as well as on the as-
sumption of hidden dynamical behavior from trial-
to-trial.

2.5 Artifact correction by ICA

Individual EEG channels measure superimposed ac-
tivity generated simultaneously by various brain
sources. The behavior of the sources is stochastic
and generally non-stationary. In addition, artifact
sources, such as eye blinks, can distort statistical
properties of the signals and increase complexity.
For the problem of blind source separation (BSS)
of the multichannel EEG measurements, target is to
recover unobserved brain generated initial source sig-
nals by using only the available sensor data and some
statistical properties assumed for the sources [25, 26].

Fundamentally, the basic problem that BSS at-
tempts to solve assumes a set of L measured data
points xn = (xn(1), . . . , xn(l), . . . , xn(L))T at time
instant n (n = 1, . . . , N) to be a linear combination
of m unknown sources yn = (yn(1), . . . , yn(m))T , i.e.

xn = Ayn + υn. (34)

For EEG measurements, L is the number of available
channels, and the measurements can be summarized
in a matrix X having the vectors xn in its columns
and different channel recordings in each row. A time-
invariant mixing matrix A is the common approach
for ICA and BSS of EEG, for example, in event-
related studies [3]. This model can be interpreted
as the fixed biophysical structure of the brain itself
whilst the sources distributed within this structure
change their intensity over time [25].
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A general formulation for BSS without any as-
sumptions (prior information) about the nature of
the data, noise, or mixing system will leave the prob-
lem of EEG separation intractable. Therefore, some
basic assumptions are needed. For example, the
goal of ICA is to recover independent sources given
only sensor observations that are unknown linear
mixtures of unobserved independent source signals
[27, 28].

The assumption of physiological independence of
the sources can be quite obvious in some situations,
for example, when used in artifact rejection separat-
ing brain signals from ocular artifacts. Note that
the ICA model considers the signals as independent
and identically distributed, and requires non Gaus-
sian sources. Thus, by ignoring time structure, the
estimation is based solely on investigating structure
across the sensors as estimated by the sample distri-
bution of the measurements, and an embedded den-
sity parametrization (differentiating at least between
subgaussian and supergaussian sources). Therefore,
the model might not be able to separate every kind
of sources (e.g. stationary Gaussian random pro-
cesses). However, in many situations predominant
artifacts show a highly kurtotic sample distribution
that enables estimation.

ICA methods carry ambiguities about the ordering
and the overall amplitude and sign of the estimated
sources. The rows of the data matrix X are the EEG
channel recordings and are decomposed as X = AY ,
where Y has in its rows the independent components.
The mixing matrix A contains the spatial informa-
tion of the sources obtained at the sensors. There-
fore, the columns of A are the spatial distributions
of the estimated sources, which are normalized to
unit variance. For example, eye movements and eye
blinks project mainly to frontal sites. An artifact
source can be eliminated and removed from the mea-
surements by back-projection.

3 Results

In this section, we present the performance of
Kalman filter and smoother algorithms on tracking
dynamic variations, and estimating single-trial EPs
in a simulated and a real data set. In parallel, we
investigate the performance of the method when the
signal subspace is enhanced by rejecting eye related
artifacts with the use of ICA.

3.1 Measurements and artifact removal

EEG measurements were obtained from a standard
oddball paradigm with auditory stimulation (1 sub-
ject, 60 EEG channels, reference: ears). In the
recording, 569 auditory stimuli were presented with
an inter-stimulus interval of 1 second. 85% of the
stimuli were the standard tones at 800Hz. 15% were
the deviant tones at 560 Hz. The deviant tones were
randomly presented. The subject was sitting in a
chair, and was asked to press a button every time he
heard the deviant target tone. The sampling rate of
the measurements was 500 Hz.

Reduction in noise for EEG signals can be done
with linear filtering without altering the basic ICA
model [27]. If we further assume less sources than
sensors and that the sensor noise is relatively small,
then Principal Component Analysis (PCA) on the
data covariance matrix and dimension reduction can
be used to reduce the noise and to prevent over-
learning [27]. For the analysis, the data were dig-
itally filtered in the range (1-35Hz). All the mea-
surement set (about 10 minutes) was used for the
estimation of the separating matrix. The dimension
of the data was reduced with PCA to 31, by keeping
eigenvectors associated with eigenvalues larger than
1, resulting in more than 99% of explained variance.
The FastICA algorithm in parallel form [27] was used
for the estimation of independent components.

By visual inspection of the estimated components
and scalp activations two components showed to be
related to eye activity. The blink components are
presented in Figure 1. On the left they are pre-
sented the time activations corresponding to the first
minute of the recordings, and on the right the spa-
tial distributions. Furthermore, these components
did not show any significant correlation with the two
types of stimuli (standard and target). Correlation
with stimulation time was investigated by comput-
ing EP image plots for every estimated component.
The component based EP image plots are not shown
here, but such images are also used in the next sec-
tion (Figure 3 and Figure 5). EP image plots are
constructed by color-coding potential variations oc-
curring in single-trial epoch vectors (e.g. [3]). The
thin color-coded horizontal bars, each representing a
single-trial, are, for example, stacked row-by-row ac-
cording to data collection time (data epochs sampled
relative to successive stimulus or trial t) producing
an EP image.

Note that PCA based dimension reduction is a
rather subjective approach for the determination of
the number of brain source signals in EEG measure-
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Figure 1: Blink related components estimated with
ICA. Time activations (left) and scalp activations
(right). The left plots correspond to the first minute
of the measurement set.

ments [25]. Some relatively weak brain sources, as
measured at the sensors, may be eliminated. Ad-
ditionally, some estimated independent components
may remain the mixture of more than one source
signals. However, by computing different EP im-
age plots we did not observe any significant loss of
phase-locked EP activity. Furthermore, filtering and
dimension reduction provided good estimates for the
blink components and fast convergence for the Fas-
tICA algorithm. Therefore, the performance was
considered satisfactory for ocular artifact removal,
and for the demonstration needs of the proposed
subspace method for dynamical estimation of single-
channel single-trial EPs.

3.2 Single-trial estimation

Real EEG data were used as background EEG ac-
tivity, or noise, in the simulations. From the record-
ings, we used only the channel CZ, after preprocess-
ing and artifact removal by ICA. Only ocular arti-
facts were considered. As background activity for
the simulations we sampled prestimulus EEG epochs
from -500 ms to 0 ms relative to the standard stim-
ulus onset. Simulated EPs were constructed accord-
ing to the additive noise model by superimposing
upon the selected real EEG epochs linear combina-
tions of 2 Gaussian shaped functions. In order to be
consistent to the real measurements (standard tones
and N100/P200 complex), each pseudo-real EP vec-

50 100 150 200 250 300 350 400 450
−25

−20

−15

−10
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0
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Stimulus [t]

S
N

R
 [d

B
]

Figure 2: Time-varying SNR(dB) for the simulated
second peak as a function of the stimulus number

(trial) t, i.e. SNRt = 10 log10

P

i
s2

t
(i)

P

i
υ2

t
(i)

, t = 1, . . . , T ,

where st are the simulated noise-free single-trial EPs
and υt prestimulus EEG epochs sampled relative to
the standard tone from channel CZ after ocular arti-
fact removal with ICA. The sums were considered in
a smaller interval around 200 ms covering only the
second peak (see also Figure 3).

tor has two Gaussian peaks: a negative after 100 ms
and a positive after 200 ms. Trial-to-trial sinusoidal
variations for the amplitude and latency of the sec-
ond peak were generated. Random variations were
also added to the amplitudes, latencies and widths
of both simulated peaks.

The estimated time-varying SNR with respect to
the second peak only can be seen in Figure 2 as a
function of the stimulus number t. Therefore, the im-
portant assumption in the simulations is the trend-
like behavior in low signal-to-noise ratio conditions.
By construction the simulated EPs have trend-like
trial-to-trial characteristics. This can be observed
in Figure 3 (left) and the EP image plots. In the
same figure (bottom, left), they are also presented 10
dominant eigenvectors of the data correlation matrix
obtained before and after EEG addition.

It must be noted that the aim in the creation of
the simulations was that the average of the simu-
lated EPs is close to the average of the real mea-
surements (standard tones and N100/P200 complex
at channel CZ). The average of the real measure-
ments has a negative peak around 110 ms (N100)
with amplitude about -4 µV , and a positive peak
(P200) around 230 ms with amplitude about 5 µV .
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Figure 3: Simulations resembling the N100/P200 auditory complex and obtained estimates. For background
noise prestimuli EEG samples relative to standard tones from channel CZ after ocular artifacts removal were
used. Left: Simulations (Gaussian functions) and noisy simulations, single-trials as image plots (up), and
the respective 10 dominant eigenvectors of the data correlation matrix (bottom). The EP images represent
stimulus locked stacked epochs (row-by-row). The color-maps describe the amplitude level in µV , y-axis
represents successive stimulus or trial t, and the x-axis represents within a trial latency variation. Right:
Single-trial estimates as image plots with Kalman filter and smoother (up) and estimated variability of the
second positive peak (bottom). Simulated amplitude and latency trends (light bold), estimates based on
Kalman filter (dark thin) and based on fixed-interval Kalman smoother (dark bold). For estimation the
selection σ2

ω = 10−2 was used.

Then the simulations were created as follows. For
the first peak random variability in a small range in
amplitude and latency was simulated that gives en-
semble average with peak amplitude about -4 µV at
the required latency. For the second peak dynamic
variability was created with range of about 10 µV
(2-12 µV ) in amplitude and about 45 ms in latency,
such that the average has peak amplitude about 6 µV
and similar latency to the real measurements. Then
prestimuli EEG was added. In that respect, SNR
conditions were not directly considered, but instead

a reasonable range for the time-varying behavior was
assumed that can produce similar average with the
real measurements.

For estimation the state-space model (32), (33)
was selected. For the covariances we used Cωt

= σ2
ωI

and Cυt
= σ2

υI for every stimulus t. Then the selec-
tion of the last variance term is not essential since
only the ratio σ2

υ/σ
2
ω has effect on the estimates.

Then the choice Cυt
= I can be made and care

should be given to the selection of σ2
ω. In general,

if it is tuned too small fast fluctuation of EPs are
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going to be lost, and if it is selected too big the es-
timates have too much variance and they will tend
to be similar to the ordinary least squares or princi-
pal component regression solution. The selection can
be based on experience and visual inspection of the
estimates as a balance between preserving expected
dynamic variability and greater noise reduction.

In order to identify an optimal value for the vari-
ance term σ2

ω for the simulations we calculated root
mean square errors (RMSEs) between the estimates
based on the noisy data and the noiseless simulated
EPs. The RMSEs were computed with respect to the
second peak only over a smaller time interval around
200 ms. For initialization of the algorithms we used
half the data set by filtering backwards in time. The
last estimates were used for initializing the forward
run. Finally, the last state estimate of the Kalman
filter forward run was used to initialize the backward
smoothing procedure.

Means of RMSEs over all single-trials for differ-
ent values of state noise variance parameter and for
different dimensions of the observation matrix are
presented in Figure 4 as contour plots for Kalman
filter (top) and smoother (middle). In all the cases,
Kalman smoother provides smaller error than the fil-
ter. This is to be expected, since all the measure-
ments are included in the estimation procedure. The
reduction of the error during backward smoothing is
due to greater noise cancellation, as well as better
tracking of the dynamic fluctuations. Optimal val-
ues of σ2

ω for all the selected observation matrices
are between 10−3 and 10−2. By considering the con-
tour plots and by inspection of the estimates, around
10 eigenvectors are enough for tracking the dynamic
fluctuations. Single-trial estimates for that dimen-
sion (k = 10) and with the selection σ2

ω = 10−2 are
presented in Figure 3 as image plots for Kalman filter
and smoother. In the right (bottom) of the same fig-
ure they are presented estimates for the single-trial
latency and amplitude of the second peak as a func-
tion of the stimulus number or trial t.

State-space representation and a few dominant
eigenvectors obtained from the ensemble data cor-
relation matrix are able to model the amplitude and
latency changes. Bayesian recursive mean square es-
timation is able to reveal the hidden dynamic vari-
ability under unfavorable signal-to-noise ratio condi-
tions. Clearly, Kalman smoother tracks better the
dynamic changes and reduces greater the noise.

For the real measurements we considered epochs 0-
500 ms after the presentation of the standard tones
from channel CZ before and after eye artifact re-
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Figure 4: Means of RMSEs for different values of
the state noise variance parameter σ2

ω and different
number of dominant eigenvectors included in the ob-
servation model. Contour plots of the means for
Kalman filter (top) and smoother (middle). Means
when 10 eigenvector are included in the observation
model (bottom). In all plots the x-axis is in loga-
rithmic scale.

moval. For the two data sets we selected 10 eigen-
vectors of the data correlation matrix for estima-
tion. The strong blink contributions clearly affect
the eigenvectors and the signal subspace, especially
after the first half of the measurements, see Fig-
ure 5. This can also be seen by observing the first
two eigenvectors that reflect mainly blink artifacts.
However, since the blinks occur random enough, re-
cursive mean square estimation is largely reducing
their contribution. This can be observed in Fig-
ure 5 from the estimates, which are obtained with
Kalman smoother with the same choices σ2

ω = 10−2

and k = 10 for both data sets. The estimated dy-
namic variability of the second peak (P200) in terms
of amplitudes and latencies is presented in the left
(bottom) of the same figure.

Some representative individual single-trial esti-
mates are presented in Figure 6 for the simulations
(left) and real EP measurements (right). The esti-
mates for the simulations and the real EP measure-
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Figure 5: N100/P200 auditory complex, measurements from channel CZ. EEG epochs relative to the stan-
dard tones (0-500 ms after auditory stimulation), and obtained estimates. Left: EEG epochs as image plots
after and before blink correction (up) and the respective 10 dominant eigenvectors of the data correlation
matrix (bottom). The EP images represent stimulus locked stacked epochs (row-by-row). The color-maps
describe the amplitude level in µV , y-axis represent successive stimulus or trial t, and the x-axis within a
trial latency variation. Right: single-trial estimates as image plots with Kalman smoother (up) based on
artifact corrected measurements and original measurements respectively, amplitude and latency estimates of
the P200 peak (bottom) based on original measurements (thin) and artifact corrected measurements (bold).
For estimation the selection σ2

ω = 10−2 was used.

ments (standard tones and N100/P200 complex) are
based on the artifact corrected EEG and Kalman
smoother algorithm. The identification of peak po-
tentials from raw measurements can be misleading
even in simple simulations (e.g. stimulus number
t = 50, left). The proposed method produced accu-
rate estimates for the simulations even in very low
SNR conditions (e.g. stimulus number t = 450, left).
This is because we assumed a trend-like variability.
The evaluation of the estimates for the real EPs is
naturally more difficult. For example, clear N100
and P200 peaks are obtained for stimuli 50 and 250

(right). Though, the identification of peaks is not
trivial for stimulus 450 (right). However, it must be
noted that the proposed method does not make as-
sumptions for the number of peaks and their exact
form. This information is obtained from the esti-
mated signal subspace and the included eigenvectors.

In summary, the proposed approach for single-trial
dynamical estimation of EPs consists of the following
steps. 1) Band-pass filter the selected EEG channels.
This has as an effect the improvement of the quality
of the signal subspace. For example, it can reduce
high frequency components, and therefore, it can
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Figure 6: Representative single-trial estimates based on Kalman smoother algorithm. Estimates for the
simulations (left) and for the real measurements (right) (standard tones and N100/P200 complex after ocular
artifact correction by ICA). Measurements and noisy simulations (dark thin), noise free simulations (light
bold), and estimates (dark bold).

provide smoother eigenvectors and estimates. 2) En-
hance the quality of the signal subspace. If the EEG
epochs contain strong artifact contributions, such as
eye blinks, an artifact correction method can be ap-
plied, for example ICA. 3) Estimate the data corre-
lation matrix and compute eigenvectors. In the sim-
plest case, a basic artifact correction method based
on thresholding of potential values and excluding
very noisy single-trial epochs can be applied prior to
the computation of the correlation matrix. 4) Select
a few dominant eigenvectors to form the observation
model for estimation. The estimated signal subspace
must be able to model latency changes for different
phase-locked EP components. 5) Estimate EP char-

acteristics with Kalman smoother algorithm. The
smoothing parameter can be selected by visual in-
spection of the estimates (EP image plots), and by
considering the expected trial-to-trial variability of
individual peaks.

4 Discussion and Conclusion

We presented a new dynamical estimation method
for single-trial EP estimation based on a state-space
representation for the trial-to-trial evolution of EP
characteristics. The method uses the eigenvalue de-
composition of the data correlation matrix for the
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identification of the state-space model. This is an
extension of the method presented in [17], where a
generic observation model was used. A few domi-
nant eigenvectors obtained from the ensemble mea-
surements incorporate prior information about shape
characteristics and within trials correlations of indi-
vidual EP peaks. This approach takes also into ac-
count individual subject characteristics for estima-
tion. Therefore, the method is applicable for differ-
ent types of EP experiments as long as dynamical
behavior from trial-to-trial could be expected. For a
Gaussian basis selection like in [17], someone has to
select the number of basis vectors and their width.
This is not always trivially easy, since a given wave
shape may perform in a different way for every in-
dividual peak. Therefore, a benefit of SVD is the
rather easy selection of observation model that can
take into account shape information about different
peaks and individual subject characteristics. How-
ever, for very weak EPs a generic observation model
may have better performance.

Estimates for the state parameters are obtained
with Kalman filter and fixed-interval smoother algo-
rithms. Both share the optimality of Bayesian re-
cursive mean square estimation. The fixed-interval
smoothing method estimates better the hidden dy-
namic changes and reduces greater the noise. There-
fore, it should be preferred when all the measure-
ments are available. The same behavior can be
shown when other observation models are consid-
ered, for example, generic basis vectors as in [17].
Therefore, the present paper introduces the use of
Kalman smoother algorithm for dynamical estima-
tion of EPs. The use of the filter is appropriate for
on-line estimation. However, compromises between
better tracking capabilities and almost on-line esti-
mation can be searched in terms of fixed-lag smooth-
ing methods [29].

For the demonstration of the methods we used
measurements from an auditory experiment (oddball
paradigm). Since the aim was to investigate to per-
formance of the methods when strong artifacts exist,
we only considered the standard tone measurements
and not the deviant and the P300 target response.
For this data set the blink artifacts were more promi-
nent for the standard tones. In addition, the esti-
mates of latency and amplitude of the P200 peak
(slower and smaller responses towards the end of the
measurements) just show that even in ordinary ex-
periments some dynamic behavior from stimulus-to-
stimulus could be expected. However, the method
should be addressed to the study of more specific ex-

perimental settings. The investigation of latency or
amplitude estimates could, for example, be used to
study possible habituation effects due to repetition
of stimuli, or to study cognitive changes due to time-
varying task difficulty or extra distraction. Latency
or amplitude changes of peak potentials can also be
used to track changes caused by sedative drugs dur-
ing anesthesia.

EP measurements are usually made with multi-
ple electrodes providing spatial information for the
experiment. This information can be used at least
to remove artifacts from the signals. We showed by
means of ICA that even when the signal subspace is
distorted from characteristic artifacts the method is
still able to track changes in EP peak components.
This is because in the filtering or smoothing proce-
dure phenomena uncorrelated from trial-to-trial are
largely eliminated. In fact, this is exactly the main
advantage of dynamical estimation for single-trial
EP analysis. However, accurate artifact removal or
further elimination of undesirable brain generated
components can enable better quality for the sig-
nal subspace and individual channel measurements.
Extensions to multichannel measurements could be
searched by applying the method to each channel
separately. Then the variable signal-to-noise ratio
conditions from channel to channel should be con-
sidered. Another approach could be to direct intro-
duce spatial information in the state-space model.
Such multichannel extensions could be investigated
for further development of the method. Finally, the
signal subspace method can be extended to multi-
channel measurements. Then it could, for example,
be combined with BSS methods.
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